


in parallel, the cognitive system can easily extract or code for letter 
combinations. So, what is the nature of the orthographic code that 
enables location-invariant recognition of printed words?

Today, there is a general consensus that the literate brain imple-
ments some form of word-centered, location-independent ortho-
graphic coding such that letter identities are coded for their position 
in the word independently of their position on the retina, at least 
for words that require a single fixation for processing. This con-
sensus also extends to the principle that such within-word position 
coding of letter identities is flexible and approximate – in other 
words, letter identities are not rigidly allocated to a given position 
(Whitney, 2001; Grainger and van Heuven, 2003; Gomez et al., 
2008; Davis, 2010). Key evidence in favor of such approximate, 
flexible coding has been obtained using the masked priming para-
digm. For a given proportion of letters shared by prime and target, 
priming effects are not affected by small changes of letter order 
(transposed-letter priming: Perea and Lupker, 2004; Schoonbaert 
and Grainger, 2004), and length-dependent letter position (relative-
position priming: Peressotti and Grainger, 1999; Grainger et al., 
2006). Furthermore, using a combination of masked priming and 
EEG recordings, Dufau et al. (2008), Carreiras et al. (2009), and 
Grainger and Holcomb (2009) have studied the time course of such 
flexible orthographic processing. They found that, by the time the 
ERP components were found to be sensitive to flexible orthographic 
priming, they were no longer sensitive to whether or not prime and 
target stimuli were spatially aligned.

In the present work we start from the further assumption that 
flexible orthographic processing is achieved by coding for letter 
combinations (Whitney and Berndt, 1999; Whitney, 2001; Grainger 
and van Heuven, 2003; Dehaene et al., 2005). Our study does not 
aim to pit this particular type of coding scheme against alterna-
tive coding schemes that do not use letter combinations, such as 
the coding schemes implemented in the SOLAR model (Davis, 
2010) or the overlap model (Gomez et al., 2008), although this 
is indeed an important goal for present and future research (see 
Davis, 2010, for a recent comparison of these different theoretical 
approaches). Given the popularity of the general notion of n-gram 
coding (especially bigrams and trigrams), and the almost exclusive 
use of contiguous n-grams before the pioneering work of Mozer 
(1987) and Whitney and Berndt (1999), it seemed important to 
analyze the arguments behind this theoretical shift to including 
non-contiguous letter combinations in n-gram coding. We pre-
sent and analyze these arguments within the specific framework 
of Grainger and van Heuven’s (2003) parallel open-bigram model, 
and although some of the arguments are shared with Whitney’s 
(2001) serial open-bigram model (the SERIOL model), a detailed 
analysis of this particular approach is beyond the scope of the pre-
sent work (see Whitney, 2008; Whitney and Cornelissen, 2008, for 
more information about this specific approach). Instead, we focus 
on two distinct perspectives within Grainger and van Heuven’s 
parallel open-bigram approach, which we now describe.

The Grainger and van Heuven (2003) proposal is illustrated in 
Figure 1. In this model, location-invariant orthographic coding occurs 
at what is referred to as the “relative-position map.” The relative- 
position map abstracts away from absolute letter position and, instead, 
focuses on relationships between letters. The first stage of processing 
in this model is the parallel mapping of visual features onto letter 

identities at a specific horizontal location with respect to eye fixation 
(the alphabetic array). This location-specific coding of letter identities 
is then transformed into a location-invariant prelexical orthographic 
code (the relative-position map) before matching this information 
with whole-word orthographic representations in long-term memory. 
The key distinguishing feature of this specific approach is that flexible 
orthographic coding is achieved by coding for ordered combinations 
of contiguous and non-contiguous letters (see Mozer, 1987; Whitney, 
2001, for earlier proposals along the same lines).

Grainger and van Heuven (2003) proposed open-bigram coding 
as one means of achieving the gain in flexibility that is necessary 
in order to capture empirical findings that standard bigram cod-
ing schemes cannot account for. As already pointed out by several 
authors (see Grainger, 2008, for a review), standard bigram and 
trigram coding schemes cannot capture some basic empirical phe-
nomena, such as the transposed-letter and relative-position prim-
ing effects mentioned above. In the present theoretical note we 
provide an exploration of Grainger and van Heuven’s open-bigram 
coding scheme using the general framework of rational analyses 
of human information processing. More specifically, we examine 
the utility of coding for non-contiguous as well as contiguous let-
ter combinations within this general approach to orthographic 
processing, over and above the fact that this confers the flexibility 
that is necessary to account for key empirical results.

When we begin to think about how coding for non-contiguous 
letters might emerge in a system that starts with parallel location-
specific letter encoding, then two different perspectives emerge. 
On the one hand, it has been proposed that the coding of non- 
contiguous letter combinations arises because of noisy position 
coding in location-specific (retinotopic) letter detectors (e.g., 
Dehaene et al., 2005). Within this particular perspective, the sys-
tem aims to code for contiguous letters combinations, and ends up 
coding for non-contiguous elements as well, because of positional 
errors (see Grainger et al., 2006, for a specific implementation of 

Figure 1 | grainger and van Heuven’s (2003) model of orthographic 
processing. Visual features activate location-specific alphabetic character 
detectors (the alphabetic array) aligned along the horizontal meridian. Next, 
information from the alphabetic array is mapped onto ordered pairs of 
contiguous and non-contiguous letters (not all possible combinations are 
shown). Finally, relative-position-coded letter identities activate whole-word 
orthographic representations (O-words).

Dandurand et al. Non-contiguous letter combinations

Frontiers in Psychology | Cognitive Science  June 2011 | Volume 2 | Article 136 | 2

http://www.frontiersin.org/cognitive_science/
http://www.frontiersin.org/cognitive_science/archive


letter combinations is easier (i.e., less complex) in that less precise 
information about letter positions is required compared with a 
system that codes for contiguous letter combinations. Put differ-
ently, it is clear that relative-position information (A is before B) 
is more reliable when A and B are farther apart. In other words, 
non-contiguous letter combinations might provide a more robust 
relative-position code than contiguous letter combinations.

In order to test this proposal, in what follows we first describe the 
corpuses of words on which our analyses were based. Second, we 
provide empirical data concerning letter-in-string visibility. Third, 
we describe how conditional probabilities are computed under this 
visibility constraint. We then provide mathematical analyses of the 
information carried by different types of letter combinations, pro-
viding a measure of a bigram’s informativeness with respect to a 
given word, and a ranking of bigrams within a word in terms of 
their relative informativeness. Finally, we provide empirical tests of 
these measures by examining to what extent they can capture key 
patterns of data obtained in orthographic priming experiments.

MaterIals and Methods
corpuses and word lengths
The current study covers three languages: French, English, and 
Spanish. In all three languages, analyses are based on lemma forms 
of words composed of letters only (i.e., lemmas that included hyphens, 
spaces, etc., were excluded) and of lengths between five and seven 
letters. Words between five and seven letters were selected because vis-
ibility data was available for such lengths (see section below), or could 
be interpolated2. As a French lexicon, we used the Lexique (version 
3.55) database (New et al., 2004). It contains 125,653 words (including 
46,942 lemmas) along with information such as phonology, lexical 
category, and lexical neighborhood. After selection based on the cri-
teria above, 11,811 words were chosen. As an English lexicon, we used 
the Celex database (Baayen et al., 1993). It contains 50,591 lemma 
forms. After selection based on the criteria above, 18,275 words were 
selected. As a Spanish lexicon, we used the BuscaPalabras database 
(Davis and Perea, 2005) which is a subset of the Spanish lexicon called 
LEXESP (Sebastián-Gallés et al., 2000). It contains 31,491 lemmas. 
After selection based on the criteria above, 11,394 words were selected.

letter-In-strIng vIsIbIlIty
An important aspect of our analyses is the use of realistic letter-in-
string visibility constraints in the computation of conditional prob-
abilities, along with a comparison with a control condition in which 
all letters are equally visible. In fact, empirical evidence suggests that 
not all letters are equally visible when an eye fixation is made on 
a word. It is possible that two constraints play a role. First, visual 
acuity is best at the center of the fovea, and degrades as eccentricity 
increases. Thus, the letter at fixation is more visible. Furthermore, 
outer letters of words are more visible, which may be explained 
by the fact that crowding is reduced for outer letters compared to 
inner letters (e.g., Tydgat and Grainger, 2009; Grainger et al., 2010).

Empirical data on letter-in-string visibility used here are 
from Stevens and Grainger (2003). For the present theoreti-
cal note, we assume that fixations occur on the central position  

this  mechanism referred to as the “overlap open-bigram model”). 
Therefore, within this perspective, there is no need to justify the 
coding of non-contiguous letter combinations, they simply arise by 
accident, and accidentally confer the additional flexibility that allows 
the coding scheme to capture key data patterns. Here we take a very 
different perspective, proposing on the contrary that the coding of 
non-contiguous letter combinations is deliberate, and not the result 
of inaccurate location-specific letter coding. In other words, non-
contiguous letter combinations are coded because they are beneficial 
with respect to the overall goal of mapping letters onto meaning, 
and not because the system is not accurate enough to determine 
the precise location of letters. Within this particular perspective it is 
therefore important to ask why the coding of non-contiguous letter 
combinations might have developed during reading acquisition in 
order to optimize orthographic processing. To answer this question, 
we first perform analyses of the mathematical dependencies and 
regularities in real corpuses of words, and the constraints they place 
on the process of lexical identification. We then apply these analyses 
to explain some experimental results. These analyses also take into 
consideration visual constraints on the quality of the information 
being processed. Before presenting these analyses, we first describe 
the overall methodology employed in the present work.

optIMal letter coMbInatIons for word recognItIon
Here we apply a rational analysis to Grainger and van Heuven’s 
(2003) model of orthographic processing, in order to understand 
why a biological system learning to read a language with an alpha-
betical orthography would code for non-contiguous letter com-
binations. Expressed in terms of Anderson and Milson’s (1989) 
methodology for deriving rational analyses of cognitive processes, 
we define one key goal of the word recognition system as the map-
ping of location-specific letter representations onto location-invariant 
whole-word orthographic representations. This, of course, represents 
one (critical) sub-goal of the overall task of mapping visual infor-
mation onto meaning. A key characteristic of the environment 
that constrains the optimization of this mapping is letter-in-string 
visibility (see section below). Also, inputs available to the reading 
system vary in informativeness or diagnosticity. The probability of 
encountering a unit (letter or bigram) is a function of its frequency. 
Rare (low probability) events are more informative than frequent 
(i.e., predictable) events (c.f., information theory: Shannon, 1948)1.

We therefore propose three reasons why a biological system 
learning to read a language with an alphabetical orthography would 
deliberately code for non-contiguous letter combinations. The first 
has to do with letter visibility: the most visible letters – the letter at 
fixation, the first and the last letter of a word – are non-contiguous 
(Stevens and Grainger, 2003), see section below for details. These 
letters are more easily and reliably identified. The second concerns 
the positions of letters in a word that are the most informative with 
respect to lexical identity. We investigate whether a system that tries 
to minimize letter-level processing while maximizing information 
would be well advised to code for non-contiguous letter combina-
tions. The third possible reason is that coding for non-contiguous 

1It should be noted that the use of diagnostic information is thought to be only one 
part of the complete set of processes involved in skilled word reading (Grainger 
and Ziegler, 2011).

2We considered other word lengths to be unwarranted because they would have 
required an extrapolation of the available visibility data.
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Extending Stevens and Grainger’s (2003) method applied to sin-
gle letter frequencies, we approximated the conditional probability 
of a word given a bigram. We compare two visibility conditions: 
perfect visibility and realistic visibility.

Under perfect visibility, both letters are optimally visible and the 
equation is as follows:

p(word |bigram)=freq(word)/ words thatcontain bigram

number o

∑ (
× ff times bigramoccursin the word)  (1)

Under realistic visibility, the visibility constraints are taken into 
account, as follows:

p(word|bigram)=vis vis freq(word)/

freq words  thatcontain

21 ∗ ∗

∑ bbigram

number of timesbigram occursin the word

(
× )  

(2)

where vis
1
 and vis

2
 are the visibility of letters constituting the 

bigram, as they appear in the target word. For example, for the 
word SILENCE, bigram SL contains letter S in position 1 which 
has a visibility vis

1 
of 0.786, and letter L in position 3 has a visibility 

vis
2
 equal to 0.708 (see Figure 2).

results
analysIs 1: InforMatIon values of letter coMbInatIons – 
MInIMal substrIngs to IdentIfy words
For a reading system aiming at the compression of data while 
maximizing the information retained, is it beneficial to code for 
non-contiguous letter combinations? To answer this question, we 
identified the shortest ordered (but not necessarily contiguous) 
letter subset that uniquely identifies words. These ordered letter 
subsets can be seen as compressing input data by dropping letters 
that are not critical to the identification of the target word, defin-
ing in a sense the optimal abbreviation of a word. For example, 
the word “fatigue” can be uniquely identified by ordered letter 
substrings “ftge” and “atge.” The analysis consists in counting 
how many contiguous letter pairs of the substring are formed 
of contiguous and non-contiguous letters in the baseword. For 
example, the sequence “atge” from the baseword “fatigue” contains 
one contiguous letter pair (“at”), and two non-contiguous pairs 
(“tg” and “ge”). When multiple ordered letter subsets of the same 
length existed (for example, there were two sequences of four 
letters for word “fatigue”), all these sequences were considered 
in the analysis.

Note that, for Analysis 1 only, we further selected words that 
were not strict letter subsets of other words (example “table” is 
a strict letter subset of “tableau”) because, for such words, any 
substring (including the word itself) also identifies words com-
posed of supersets of letters3. Of the total words reported in the 
Section “Corpuses and Word Lengths,” 85.5% of the French words 
(N = 10,129) were selected for analysis under this criterion, as 
well as 74.9% of the English words (N = 13,696) and 87.9% of the 
Spanish words (N = 10,012).

(e.g.,  letter position number four in a string of seven letters), which 
is a useful first approximation of actual distributions of fixation 
positions (Rayner, 1979). Stevens and Grainger (2003) presented 
uppercase letter targets embedded in strings of uppercase Xs (e.g., 
XXTXXXX) forming strings of either five or seven letters. These 
stimuli were presented briefly and were preceded and followed 
by a pattern masking stimulus. Participants first focused on a 
central fixation point and then had to identify the letter in the 
string that was not an X. Figure 2 presents the visibility graph for 
seven-letter strings. Data also exists for five-letter strings, and, for 
our analysis, visibility values for six letters were interpolated from 
empirical values for five and seven letters. It should be noted that 
similar patterns of letter visibility have been found when strings 
are composed of a random series of consonants, and post-cueing 
is used to indicate the location for letter identification (e.g., Tydgat 
and Grainger, 2009).

coMputatIon of condItIonal probabIlItIes
Analyses 2 and 3 examine the information carried by different 
ordered pairs of letters (i.e., bigrams) that can be contiguous or not 
in the target string. For example, for the word TABLE, bigrams TA, 
AB, BL, and LE are contiguous, whereas TB, TL, TE, AL, AE, and BE 
are non-contiguous. Unless specified otherwise, the analyses con-
sisted of comparing contiguous and non-contiguous bigrams. Note 
that contiguous and non-contiguous bigrams are collectively called 
open-bigrams. For the intermediate level of representation between 
individual letters and whole words described earlier, open-bigrams 
represent a candidate coding scheme because they abstract away 
from absolute letter position while preserving information about 
the relative position of letters. Furthermore, open-bigrams have the 
advantage of using minimal information about position – only the 
left–right relationship of the two constituent letters. In contrast, other 
coding schemes (e.g., Overlap model: Gomez et al., 2008; Spatial cod-
ing: Davis, 2010) often need some continuous and transitive measure 
of position (e.g., position of letter 1 < pos 2 < pos 3).

Figure 2 | Letter visibility (recognition probability) as a function of 
within-string position, for a seven-letter string with fixation on the 
central position (i.e., the fourth letter) from Stevens and grainger, 2003. 
Note that this recognition curve is based on data collected in French.

3The subset–superset relationship described is only for selected words of 5–7 letters, 
and not for all words in the language.
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for the word, and therefore the more informative that bigram is. 
We wanted to determine if the most informative bigram for a word 
tended to be contiguous or not.

We computed the conditional probability of words given 
bigrams, p (word | bigram) and we examined the distribution 
of the positions occupied by the letters that composed the most 
informative bigrams. For this analysis, we computed conditional 
probabilities based on all words, but we selected only the words 
without any repeated letters as test words. In this way we could 
unequivocally assign a letter in a bigram to a precise position in the 
word, and therefore know whether the bigram in question is con-
tiguous or not. The number of words included in the test set were 
5838 in French, 8412 in English, and 4750 in Spanish. Proportion 
of letters at each position in words of a given length (5–7 letters) 
that appear in the most informative bigram of words are provided 
for French, English, and Spanish (see Table 1 for the perfect vis-
ibility condition, and Table 2 for the realistic visibility condition). 
The results show that the 1st letter of words occurs more often in 
the most informative bigram than any other letter position, while 
the last letter occurs the least often. More important for the present 
purposes is that, after initial letters, it is letters located near the 
center or the left-of-center of words that occur most often in the 
most informative bigram, such that the non-contiguous bigrams 
13 and 14 are most often the most informative bigram in words of 
lengths 5–7 letters. This result follows logically from the fact that 
letter-frequency typically shows a serial position function with the 

We found that the mean percentage of non-contiguous letter 
pairs in minimal substrings were 48.4, 47.9, and 47.8% for the 
words selected from the French, English and Spanish corpuses, 
respectively. While consonants constitute 55.2, 62.8, and 53.0% of 
letters in the French, English, and Spanish corpuses, they formed 
respectively 59.2, 65.4, and 57.4% of letters in the minimal sub-
strings. Given that consonants occur less frequently than vowels, 
they carry more information, and so their over-representation is 
indeed reflected in greater information carried by these elements. 
Analysis 3a will further explore informativeness of consonants 
and vowels.

Thus, a system that (a) computes letter combinations and (b) 
tries to extract the minimal set of letters that uniquely identifies 
a given word, should pay attention to non-contiguous letters. In 
other words, the system would be performing sub-optimally if only 
contiguous letter combinations were taken into consideration.

analysIs 2: condItIonal probabIlItIes
The second analysis involved comparing how informative non-
contiguous bigrams are compared with contiguous bigrams4. The 
higher the conditional probability, the more evidence a bigram is 

Table 1 | Proportion of letter positions in the most informative bigrams under perfect visibility.

Bigram French english Spanish

 5 Letters 6 Letters 7 Letters 5 Letters 6 Letters 7 Letters 5 Letters 6 Letters 7 Letters

12 10.9% 5.2% 4.1% 9.7% 4.2% 2.6% 7.6% 6.4% 3.1%

13* 22.8% 16.2% 11.9% 22.3% 15.8% 10.1% 23.2% 15.5% 11.8%

14* 19.4% 18.4% 14.5% 22.7% 20.1% 19.8% 33.7% 12.7% 11.2%

15* 10.1% 9.0% 9.6% 14.8% 8.4% 9.0% 4.5% 17.0% 6.2%

16* N/A 6.3% 5.8% N/A 11.9% 4.3% N/A 2.3% 9.0%

17* N/A N/A 3.6% N/A N/A 10.1% N/A N/A 1.2%

23 8.5% 6.5% 3.7% 4.9% 4.5% 3.3% 5.3% 8.5% 7.8%

24* 8.0% 7.3% 5.3% 6.5% 5.4% 4.8% 8.7% 6.9% 7.4%

25* 4.9% 5.0% 6.5% 6.5% 4.3% 3.9% 1.9% 6.4% 4.0%

26* N/A 3.0% 3.0% N/A 3.4% 1.9% N/A 0.7% 4.6%

27* N/A N/A 1.6% N/A N/A 2.7% N/A N/A 0.3%

34 6.4% 5.7% 3.7% 3.4% 3.7% 3.5% 9.5% 3.3% 5.3%

35* 6.4% 5.1% 5.7% 5.9% 4.0% 3.6% 4.2% 11.1% 5.0%

36* N/A 4.5% 4.4% N/A 4.2% 2.2% N/A 1.5% 9.8%

37* N/A N/A 3.5% N/A N/A 2.5% N/A N/A 1.1%

45 2.6% 3.0% 2.0% 3.4% 2.1% 3.1% 1.4% 4.3% 0.9%

46* N/A 3.5% 4.0% N/A 6.7% 3.1% N/A 2.6% 6.0%

47* N/A N/A 3.8% N/A N/A 4.6% N/A N/A 0.8%

56 N/A 1.3% 1.0% N/A 1.3% 0.9% N/A 0.9% 3.0%

57* N/A N/A 1.8% N/A N/A 3.4% N/A N/A 1.4%

67 N/A N/A 0.5% N/A N/A 0.5% N/A N/A 0.1%

ProPorTion oF non-conTiguouS BigramS

 71.6% 78.3% 85.0% 78.7% 84.2% 86.1% 76.3% 76.7% 79.9%

*Indicate non-contiguous bigrams.

4We acknowledge that this analysis is biased by the fact that there are more non- 
contiguous bigrams than contiguous bigrams in a given string. However, from the 
perspective of demonstrating that non-contiguous bigrams do carry information 
that should not be ignored, the proportion of contiguous vs. non-contiguous 
 bigrams is irrelevant.
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As a step common to both analyses, we first computed the condi-
tional probability of each word in some realistic corpus given their 
constituent bigrams (as in Analysis 2), and then ranked bigrams 
by decreasing conditional probability (see example below taken 
from an experiment in Spanish). Table 3 presents an example for 
the target word DOPAJE.

Next, for each word in the testing material (e.g., prime = DPJ 
and target = DOPAJE), we identified the bigrams from the prime 
(e.g., made of letters 1–2, 2–3, and 1–3 for prime DPJ, identified 
using ∗∗∗ in Table 3), some of which could be repeated (e.g., 1 × TT 
and 2 × TL for prime TTL, and target word TíTULO).

For the first analysis, we simply took the average of the con-
ditional probabilities of the target word given the bigrams in the 
prime. In the example above, we obtained conditional probabilities 
of 0.0067 for PJ, 0.0053 for DJ, and 0.0035 for DP, and thus an 
average of (0.0067 + 0.0053 + 0.0035)/3 = 0.0052.

For the second analysis based on within-word ranking, 
we sought what ranks these prime bigrams had in the target 
word, and computed informativeness as the inverse of rank (1/
rank). We computed an overall informativeness measure for 
the prime by averaging the three individual values of inverse 
ranks. The inverse of ranks measure is indicative of priming: the 
lower the rank, the more informative the prime. In the exam-
ple above, PJ has a rank of 1, DJ has a rank of 2, and DP has 
a rank of 4, which yields an informativeness measure of 1/3 ∗ 
(1/1 + 1/2 + 1/4) = 0.58.

lowest value for initial letters, followed by positions 3 and 4 (e.g., 
Grainger and Jacobs, 1993), such that it is a combination of the 
positions with the lowest letter frequencies that carry the most 
information. Overall, this analysis shows that the most informative 
bigrams in words are non-contiguous bigrams (on average 78% in 
French, 83% in English, and 78% in Spanish), and adding a visibility 
weighting does not change this pattern much.

analysIs 3: orthographIc prIMIng
In the following analyses, we investigated how conditional prob-
abilities of letter combinations could explain some key patterns 
of orthographic priming effects, and in particular (a) effects of 
consonant vs. vowel status of letters shared by primes and targets, 
and (b) effects of position of letters shared by prime and target. 
Note that these effects arise over and above the effects driven by 
amount of orthographic overlap between primes and targets. The 
hypothesis guiding our investigation is that the more informative 
the primes are with respect to target identity (as measured by 
conditional probabilities), the larger the priming effects will be. 
We performed two analyses based on bigram conditional prob-
abilities: the first one using the average of conditional probabili-
ties and the second one using the within-word ranking of these 
probabilities. The conditional probabilities are calculated for 
primes and targets tested in experiments with human partici-
pants, and the values compared with the priming effects found 
in the experiments.

Table 2 | Proportion of letter positions in the most informative bigrams under realistic visibility.

Bigram French english Spanish

 5 Letters 6 Letters 7 Letters 5 Letters 6 Letters 7 Letters 5 Letters 6 Letters 7 Letters

12 11.7% 7.0% 4.4% 10.5% 6.7% 2.3% 7.8% 8.2% 3.2%

13* 25.8% 20.2% 13.8% 25.7% 20.8% 12.0% 25.5% 19.9% 15.1%

14* 19.8% 19.0% 18.1% 23.5% 21.0% 23.7% 34.5% 12.9% 13.9%

15* 10.0% 9.1% 10.1% 14.8% 8.2% 9.5% 4.7% 15.9% 6.6%

16* N/A 6.2% 5.8% N/A 11.0% 3.9% N/A 2.5% 8.4%

17* N/A N/A 4.1% N/A N/A 10.9% N/A N/A 1.4%

23 8.1% 6.4% 2.8% 4.5% 4.8% 2.8% 4.3% 9.0% 6.5%

24* 6.8% 6.0% 4.7% 5.3% 4.7% 4.1% 7.6% 5.9% 7.0%

25* 4.5% 4.0% 4.9% 5.7% 3.5% 2.8% 1.8% 5.5% 2.5%

26* N/A 2.8% 2.0% N/A 2.8% 1.2% N/A 0.6% 3.7%

27* N/A N/A 1.2% N/A N/A 1.8% N/A N/A 0.3%

34 5.9% 5.2% 4.0% 3.0% 3.3% 3.9% 9.0% 3.0% 7.1%

35* 5.3% 4.5% 5.5% 4.5% 3.2% 3.3% 3.8% 9.7% 4.2%

36* N/A 4.0% 3.6% N/A 3.1% 1.6% N/A 1.6% 8.0%

37* N/A N/A 3.3% N/A N/A 2.2% N/A N/A 1.0%

45 2.1% 2.3% 2.3% 2.4% 1.4% 3.1% 1.0% 3.1% 1.6%

46* N/A 2.4% 3.7% N/A 4.5% 2.3% N/A 1.7% 5.1%

47* N/A N/A 3.8% N/A N/A 4.6% N/A N/A 0.9%

56 N/A 0.8% 0.6% N/A 0.8% 0.4% N/A 0.5% 2.2%

57* N/A N/A 1.3% N/A N/A 3.3% N/A N/A 1.1%

67 N/A N/A 0.2% N/A N/A 0.3% N/A N/A 0.1%

ProPorTion oF non-conTiguouS BigramS

 72.3% 78.2% 85.6% 79.6% 83.0% 87.2% 77.9% 76.2% 79.3%

*Indicate non-contiguous bigrams.
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 altogether summed 17.16% of letter occurrences in Spanish (mean 
frequency in percentage of occurrences: 1.91%). The letters that 
formed the high-frequency consonant subset were [t,n,c,r,s,l], 
summing 35.68% of letter occurrences (mean frequency in per-
centage of occurrences: 5.95%). The vowels subset accounted for 
45.63% of the letter-frequency distribution (mean frequency in 
percentage of occurrences: 9.13%). These figures are reflected in 
the conditional probabilities computed on the basis of letters (see 
Figure 3): conditional probabilities of high-frequency consonants 
and of vowels are relatively well-matched when calculated at the 
level of individual letters. In their study, Duñabeitia and Carreiras 
(2011) showed that masked relative-position priming is found 
for primes consisting of consonants of high or low frequency, but 
that vowel relative-position masked primes did not represent any 
processing benefit as compared to the corresponding controls. 
According to what was also shown in other experiments reported 
in that study (see also Carreiras et al., 2009), vowels did not yield 
significant relative-position priming effects, while both high- and 
low-frequency consonants led to reliable priming effects that were 
comparable in magnitude. Hence, the authors concluded that fre-
quency of the letters is not the underlying factor that determines 
whether relative-position priming is found. Rather, Duñabeitia and 
Carreiras (2011) hypothesized that the consonant–vowel processing 
difference relies on the main role of each of these letters. While the 
role of consonants is related to lexical access by constraining the 
lexicon, the main role of vowels is related to the identification of 
properties of the syntactic structure and the rhythmic class (see also 
Bonatti et al., 2005; Mehler et al., 2006; Pons and Toro, 2010). Across 
many languages, consonants are more numerous than vowels, and 
consequently consonant combinations are by default less frequent 
than vowel combinations, leading to a higher lexical constraint 
imposed by consonants as compared to vowels.

In the present theoretical note, we focused on the key contrast 
between high-frequency consonant and vowel primes. Empirical 
results in human participants are presented in Figure 4. We tested 
the hypothesis that, despite the fact that the materials used by 

Analysis 3a: letter type (consonants vs. vowels)
Consonants and vowels are known to play different roles in lan-
guage processing, as shown for example in the processing of contin-
uous speech (Bonatti et al., 2005). Differences between consonants 
and vowels might stem from the different lexical constraints they 
impose; for instance, vowel and consonants may activate different 
numbers of lexical candidates (Carreiras et al., 2009). Consonants 
tend to be more indicative of word identity than vowels are, as we 
have seen in Analysis 1. This advantage for consonants can be attrib-
uted, at least in part, to differences in frequencies. Vowels being 
more frequent, they are thus less informative. However, Duñabeitia 
and Carreiras (2011) have recently shown that even when vowels 
and consonants are matched for frequency and various measures 
of lexical constraint, consonant primes are still more effective than 
vowel primes. They concluded that consonants and vowels have 
distinct properties over and above frequency.

More specifically, Duñabeitia and Carreiras (2011) tested 
 relative-position priming using the masked priming paradigm 
with a lexical decision task. Relative-position priming constitutes 
a specific form of subset priming in which a masked prime is made 
of some of the letters of the target word, preserving their relative 
ordering within the string (e.g., CSN from CASINO; see Grainger 
et al., 2006). In one of their experiments, targets were six-letter 
Spanish words, while the three-letter primes were either related to 
the target (e.g., prime = DPJ and target = DOPAJE) or unrelated 
(e.g., prime = MBZ and target = DOPAJE). The latter condition 
acted as a control to establish baseline response times for the tar-
gets (see Figure 4). Critically, the three letters of the related primes 
could be formed uniquely of vowels, high-frequency consonants, 
or low-frequency consonants (according to the number of appear-
ances of each letter in the Spanish lexicon). The three critical letters 
that constituted the related primes were in all cases the first, third, 
and fifth letters of the targets. In further detail, the letters selected 
for the low-frequency consonant set were [b,d,j,m,v,z,g,f,p], which 

Table 3 | example of ranked conditional probabilities for prime DPJ and 

target word DoPaJe.

rank Bigram conditional probability

 1 PJ 0.00666***

 2 DJ 0.00530***

 3 OJ 0.00408

 4 DP 0.00350***

 5 OP 0.00135

 6 AJ 0.000941

 7 JE 0.000920

 8 DA 0.000192

 9 OE 0.000166

10 OA 0.000158

11 PE 0.000147

12 DE 0.000146

13 DO 0.000129

14 PA 0.000127

15 AE 0.000126

***Identify bigrams that the target and the prime share.

Figure 3 | conditional probabilities of the frequent consonant and 
vowel stimuli used in Duñabeitia and carreiras (2011) calculated using 
the method described by Stevens and grainger (2003) for individual 
position-coded letters.
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two levels (realistic and perfect) and letter type as an independent 
factor with two levels (vowels and frequent consonants). Both meas-
ures of informativeness were log-transformed prior to the analyses.

For the ranks-based measure of informativeness, we found a 
main effect of letter type [F(1,94) = 111, p < 0.001], a main effect of 
visibility [F(1,94) = 29, p < 0.001], and an interaction [F(1,94) = 16, 
p < 0.001]. A similar pattern was observed for the average con-
ditional probability measure of informativeness: a main effect of 
letter type [F(1,94) = 16, p < 0.001], a main effect of visibility 
[F(1,94) = 5348, p < 0.001], and an interaction [F(1,94) = 27, 
p < 0.001]. The pattern of results was consistent for both realistic 
and perfect visibilities: informativeness was higher for consonant 
primes than vowel primes when calculated using both the rank-
based measure and the average conditional probability measure.

The explanation of Duñabeitia et al.’s data, which was based on the 
lexical constraint imposed by relative-position consonantal masked 
primes as compared to the constraint imposed by vowel primes, can be 
effectively modeled in terms of the informativeness of the bigrams that 
formed the primes. Although frequencies of letters were effectively 
matched as measured by their frequency of occurrence in the Spanish 
corpus, high-frequency consonants still had an advantage over vowels 
when considered at the level of letter combinations. This effect may 
be partly due to the within-word ranks of letter positions of the let-
ters that form the bigrams, as evidenced by the control condition. 
Recall that the primes, composed of letters 1, 3, and 5, corresponded 
to two categories (letter 1 is the first letter of the word, whereas let-
ters 3 and 5 are inner letters). Since most of the letters of the word 
consist of inner letters, it is possible that the first letter of the word 
drives the difference. Namely, the fact that consonants tend to be more 
often among the most informative letters for the word than vowels at 
the first position. Thus, this analysis based on combinatorial prob-
abilities of open-bigrams provides computational confirmation of the 
idea suggested by Bonatti et al. (2005) and Duñabeitia and Carreiras 
(2011), among others, who claimed for a higher lexical information 
value of consonant combinations as opposed to vowel combinations.

Analysis 3b: effect of the central letter on priming
We next investigated if bigram conditional probabilities could 
explain some experimental results on relative-position priming. 
In an experiment involving masked priming of seven-letter French 

Duñabeitia and Carreiras (2011) were well-matched in terms of 
individual letter frequencies (as well as for lexical frequency and 
number of orthographic neighbors of the target words), the two 
critical prime conditions (high-frequency consonants and vow-
els) were not equivalent when taking into account the information 
carried by letter combinations. Our hypothesis was that observed 
results could be explained, at least in part, by the fact that infor-
mativeness of high-frequency consonants was significantly greater 
than informativeness of vowels when calculated at the level of letter 
combinations.

Using the primes and targets of the Duñabeitia and Carreiras 
(2011) study, we computed average conditional probabilities of 
the target words given the open-bigrams (contiguous and non-
contiguous) of their respective three-letter primes. These informa-
tiveness values are shown in Figure 5. As we can see, the pattern of 
informativeness measures is consistent with human response times: 
more information in high-frequency consonant primes results in 
greater priming effects.

We next tested the results of the two informativeness measures 
(inverse of rank measure and average conditional probability) using 
two-way mixed ANOVAs with visibility as a repeated factor with 

Figure 4 | empirical results in human participants for the effect of 
consonants and vowels (Duñabeitia and carreiras, 2011).

Figure 5 | effect of consonants and vowels in bigram-based analyses. Left: informativeness calculated using an average conditional probability measure. Right: 
informativeness calculated using the inverse of within-word ranking of conditional probabilities.
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visibility as a repeated factor with two levels (realistic and perfect) 
and the presence of the central letter as an independent factor with 
two levels (with and without). Both measures of informativeness 
were log-transformed prior to the analyses.

The analysis of the inverse ranking measure revealed a trending 
main effect of the presence of the central letter [F(1,298) = 3.8, 
p = 0.052], a strong effect of visibility [F(1,298) = 21, p < 0.001], 
and an interaction [F(1,298) = 50, p < 0.001]. Rank-based infor-
mativeness was higher for primes that included the central let-
ters compare to those that did not, and the interaction shows that 
the advantage of primes with the central letter was larger in the 
realistic visibility than the perfect visibility condition. Guided by 
the interaction, we verified that presence of the central letter had 
indeed a significant impact in the perfect visibility condition only 
[F(1,299) = 6.6, p = 0.011]. Thus, results with realistic visibility are 
consistent with experimental results on priming in humans: given 
an equal number of letters as primes, those that contain the central 
letter are more effective.

For the informativeness measure based on average conditional 
probabilities, the ANOVA revealed a strong effect of visibility 
[F(1,298) > 10,000, p < 0.001], an interaction [F(1,298) = 180, 
p < 0.001], but no effect of the presence of the central letter 

words using five-letter primes, Granier and Grainger (unpublished 
data)  investigated the effect of primes on response times in a lexical 
decision task. Primes were selected such that they either included 
the central letter of the target word or did not. Granier and Grainger 
found better priming for primes that contained the central letter 
compared to those that did not. Our hypothesis is that better prim-
ing can be explained by larger informativeness when primes include 
the central letter. More specifically, Granier and Grainger (unpub-
lished data) tested sixty 7-letter target words in two sub-experiments 
each containing four prime conditions. For one sub-experiment the 
four priming conditions were: 13457, 12457, 13467, ddddd; and for 
the other sub-experiment: 13457, 12367, 12567, ddddd. Numbers 
indicate the positions (out of seven letters) in targets of the letters 
selected to form the primes, and “d” stands for a letter that is not in 
the target. For example, for the word SILENCE, the prime 12367 
would be formed by the letters SILCE. Prime-target pairings were 
counterbalanced across four lists associated with four independ-
ent groups of participants in each sub-experiment. 52 participants 
were tested in the first sub-experiment, and 56 in the other sub- 
experiment. Standard masked priming procedure was used with the 
lexical decision task and 50 ms prime durations (see Grainger et al., 
2006, Experiment 1, for a description of the procedure that was used). 
The results revealed a dissociation between priming effects obtained 
with primes containing the central letter of the target (primes 13457, 
12457, 13467) compared with primes that did not contain the central 
letter of the target (primes 12367, 12567). Priming effects measured 
against the unrelated prime condition (ddddd) were significant for 
the former and non-significant for the latter.

In order to test our account of this central letter effect, we com-
puted average conditional probabilities of target words given the 
open-bigrams (contiguous and non-contiguous) of their respective 
five-letter primes. Because the present study focuses on the presence 
of the central letter, data were aggregated over conditions contain-
ing the central letter (that is, primes 13457, 12457, 13467) and 
conditions that did not (primes 12367, 12567). Empirical results 
in human participants are shown in Figure 6, and results of the 
informativeness analysis in Figure 7.

Next, for the bigram-based measure, we performed two-way 
mixed ANOVAs of the two measures of informativeness (inverse 
of within-word ranking, and global conditional probability) with 

Figure 6 | empirical results (priming effect sizes measured as rT 
differences) in human participants for the effect of central letters 
on priming.

Figure 7 | effect of central letter on priming in bigram-based analyses. Left: informativeness calculated using an average conditional probability measure. Right: 
informativeness calculated using the inverse of within-word ranking.
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about half of the letters in the resulting subset are non-contiguous. 
Second, the most informative pair of letters in a word is a non-
contiguous combination in 83% of 5–7 letter words (having no 
letter repetition) in English, and 78% in French and Spanish. In 
the second part of the paper, we saw that the superiority of the cen-
tral letter in relative-position priming can be explained by rational 
analyses based on maximizing conditional probabilities of words 
given bigrams. Also, we reanalyzed proposed evidence that con-
sonants and vowels play a different role during word recognition. 
We re-examined the finding that consonants form better primes 
in masked relative-position priming even when matched for letter 
frequencies with vowels. When considering consonants and vowels 
not individually, but as letter combinations (bigrams in the present 
analyses), we can account for the superior priming effect of con-
sonants over vowels using a parsimonious explanation based on 
informativeness, without having to appeal to qualitatively distinct 
representations for these two types of letter. This is in line with the 
proposal of Mehler and colleagues (Nespor et al., 2003; Bonatti 
et al., 2005, 2007; Mehler et al., 2006; Toro et al., 2008; Pons and 
Toro, 2010) that consonants are lexically more constraining than 
vowels, and therefore more important for word identification (see 
also Carreiras et al., 2009).

These results suggest that an optimal or rational agent learning 
to read corpuses of real words should deliberately code for non-
contiguous letters based on informational content, and given vis-
ibility constraints. Thus, the optimality or rationality argument is 
sufficient to explain the coding of non-contiguous letters. However, 
this does not preclude some contribution of biological constraints 
in readers, such as noise and inaccuracies, in such encoding.

In the present work we compared two measures of bigram infor-
mativeness with respect to their ability to account for orthographic 
priming data. Both measures used the conditional probability of 
bigrams in a given prime stimulus, with one measure taking the 
average of the conditional probabilities for a given prime, and 
the other taking the average rank value of each bigram in the 
prime stimulus among the complete set of bigrams in the target 
stimulus. Only the rank values successfully predicted the com-
plete set of empirical findings, and rank values were generally 
more sensitive than conditional probabilities. So, given a prime 
stimulus TBL for the target TABLE, it would appear that prim-
ing effects depend more on how constraining the letters shared 
by prime and target are with respect to the other bigrams in the 
target word (TA, TE, AB, AL, AE, BE, LE) than on how the prime’s 
bigrams (TB, TL, BL) constrain target word identity (i.e., their 
average conditional probabilities). This important finding suggests 
that during the process of learning to read, the most informative 
bigrams are “selected” or at least given priority over less informa-
tive bigrams, and the manner in which this priority is accorded 
has a long-lasting influence on the speed with which this infor-
mation is processed. Furthermore, this finding explains why, in 
prior unpublished research from our laboratory, manipulations 
of lexical constraint failed to modulate the size of orthographic 
priming effects, since the manipulation of lexical constraint was 
based on average conditional probabilities.

The finding that the informativeness ranking of open-bigrams 
was a superior predictor of word identity than the average informa-
tiveness of open-bigrams can be linked to the work on  diagnosticity 

[F(1,298) < 1]. In sum, average conditional probabilities of bigrams 
do not explain the effect of letter centrality, but the inverse ranking 
measure does. The within-word ranking measure of informative-
ness appears to be more sensitive than the conditional probability 
measure, an effect that was already observed in the size of the effects 
reported in Figure 5. This suggests that the relative informativeness 
of each bigram in the prime stimulus with respect to the other 
bigrams of the target word might be a better measure than the 
average measure of informativeness of letter combinations in the 
entire corpus (average conditional probability). In other words, 
the stimulus-specific relative information is perhaps more critical 
than the absolute measure of informativeness.

dIscussIon
In this theoretical note, we investigated the nature of the ortho-
graphic code that subserves the parallel mapping of location-spe-
cific letter identities onto location-invariant lexical representations. 
We hypothesized that some form of intermediate orthographic 
code is necessary, and that this code involves subsets of letter identi-
ties and information about their relative positions. We then exam-
ined the kind of intermediate orthographic code that would enable 
skilled readers to map letters onto words as efficiently as possible 
by optimizing utilization of the available information while mini-
mizing resources. More precisely, we asked whether the constraints 
of optimality would lead to the coding of non-contiguous letter 
combinations as well as contiguous ones.

We examined two kinds of constraints that an optimal reader 
should take into consideration when processing orthographic 
information. The first involved variations in letter visibility across 
the different letters of a word during a single fixation. The second 
kind of constraint concerned the varying amount of information 
carried by the different letters in the word. We hypothesized that 
a system that aims to optimize orthographic processing, that is, to 
map letter identities onto whole-word orthographic representa-
tions as efficiently as possible, will adapt to such variations in vis-
ibility and informativeness. More specifically, we hypothesized that 
this optimization would involve coding of non-contiguous letter 
combinations, under two assumptions: (i) that letter combinations 
need to be computed, and (ii) that optimal letter combinations 
are not necessarily contiguous. Furthermore, we pointed out that 
in principle it should be easier to code for non-contiguous letter 
combinations, since order information is more reliable (at the cost 
of being less precise) in this case than when letters are contiguous5.

Our corpus analyses suggest that, indeed, optimal readers should 
code for non-contiguous letters. First, when selecting an ordered 
subset of letters which are critical to the identification of a word 
(that is, dropping non-essential letters that bear little information), 

5In the more general framework for visual word recognition developed by Grainger 
and Holcomb (2009) and Grainger and Ziegler (2011; see also Grainger and  Dufau, 
2011), the coding of non-contiguous letter combinations is used in one of the two 
routes of a dual-route approach to orthographic processing. As argued in the pre-
sent work, this particular route is thought to optimize processing by selecting the 
most informative letter combinations in order to get from print to meaning as ef-
ficiently as possible. The other route is thought to optimize processing by perfor-
ming data compression via the chunking of frequently co-occurring contiguous 
letters such as multi-letter graphemes and affixes. This route is therefore thought 
to be involved in getting from print to meaning via intermediate phonological and 
morphological representations.

Dandurand et al. Non-contiguous letter combinations

Frontiers in Psychology | Cognitive Science  June 2011 | Volume 2 | Article 136 | 10

http://www.frontiersin.org/cognitive_science/
http://www.frontiersin.org/cognitive_science/archive


Grainger, J., and Dufau, S. (2011). “The 
front-end of visual word recognition,” 
in Visual Word Recognition, Vol. 1: 
Models and Methods, Orthography and 
Phonology, ed. J. S. Adelman (Hove, 
UK: Psychology Press), 54.

Grainger, J., Granier, J. P., Farioli, F., Van 
Assche, E., and van Heuven, W. J. B. 
(2006). Letter position information 
and printed word perception: the 
relative-position priming constraint. 
J. Exp. Psychol. Hum. Percept. Perform. 
32, 865–884.

Grainger, J., and Holcomb, P. J. (2009). 
An ERP investigation of orthographic 
priming with relative-position and 
absolute-position primes. Brain Res. 
1270, 45–53.

Grainger, J., and Jacobs, A. M. (1993). 
Masked partial-word priming in visual 
word recognition: effects of positional 
letter frequency. J. Exp. Psychol. Hum. 
Percept. Perform. 19, 951–964.

Grainger, J., Tydgat, I., and Isselé, J. (2010). 
Crowding affects letters and symbols 
differently. J. Exp. Psychol. Hum. 
Percept. Perform. 36, 673–688.

Grainger, J., and van Heuven, W. J. B. 
(2003). “Modeling letter position 
coding in printed word perception,” 
in The Mental Lexicon, ed. P. Bonin 
(New York: Nova Science Publishers), 
1–23.

visual word form area. Neuroimage 
49, 1837–1848.

Dufau, S., Grainger, J., and Holcomb, P. J. 
(2008). An ERP investigation of location 
invariance in masked repetition priming. 
Cogn. Affect. Behav. Neurosci. 8, 222–228.

Duñabeitia, J. A., and Carreiras, M. (2011). 
The relative position priming effect 
depends on whether letters are vowels 
or consonants. J. Exp. Psychol. Learn. 
Mem. Cogn. doi: 10.1037/a0023577

Feldman, J. (2003). The simplicity princi-
ple in human concept learning. Curr. 
Dir. Psychol. Sci. 12, 227–239.

Fiset, D., Blais, C., Ethier-Majcher, C., 
Arguin, M., Bub, D., and Gosselin, 
F. (2008). Features for identification 
of uppercase and lowercase letters. 
Psychol. Sci. 19, 1161–1168.

Freyd, J., and Tversky, B. (1984). Force of 
symmetry in form perception. Am. J. 
Psychol. 97, 109–126.

Gomez, P., Ratcliff, R., and Perea, M. 
(2008). The overlap model: a model 
of letter position coding. Psychol. Rev. 
115, 577–601.

Gosselin, F., and Schyns, P. G. (2001). 
Bubbles: a technique to reveal the use 
of information in recognition tasks. 
Vision Res. 41, 2261–2271.

Grainger, J. (2008). Cracking the ortho-
graphic code: an introduction. Lang. 
Cogn. Process. 23, 1–35.

references
Anderson, J. R. (1990). The Adaptive 

Character of Thought. Hillsdale, NJ: 
Erlbaum.

Anderson, J. R., and Milson, R. (1989). 
Human memory: an adaptive perspec-
tive. Psychol. Rev. 96, 703–719.

Baayen, H. R., Piepenbrock, R., and Van 
Rijn, H. (1993). The CELEX Lexical 
Database – Dutch, English, German. 
Philadelphia, PA: Linguistics Data 
Consortium.

Bonatti, L. L., Peña, M., Nespor, M., and 
Mehler, J. (2005). Linguistic con-
straints on statistical computations: 
the role of consonants and vowels in 
continuous speech processing. Psychol. 
Sci. 16, 451–459.

Bonatti, L. L., Peña, M., Nespor, M., and 
Mehler, J. (2007). On consonants, vow-
els, chickens, and eggs. Psychol. Sci. 18, 
924–925.

Carreiras, M., Duñabeitia, J. A., and 
Molinaro, N. (2009). Consonants 
and vowels contribute differently to 
visual word recognition: ERPs of rela-
tive position priming. Cereb. Cortex 19, 
2659–2670.

Carreiras, M., Dunabeitia, J. A., and 
Perea, M. (2007). READING 
WORDS, NUMB3R5 and $YMβOL$. 
Trends Cogn. Sci. (Regul. Ed.) 11, 
454–455.

Chater, N., and Brown, G. D. A. (2008). 
From universal laws of cognition to 
specific cognitive models. Cogn. Sci. 
32, 36–67.

Chater, N., and Vitányi, P. (2003). 
Simplicity: a unifying principle in 
cognitive science? Trends Cogn. Sci. 
(Regul. Ed.) 7, 19–22.

Chauncey, K., Holcomb, P. J., and 
Grainger, J. (2008). Effects of stimu-
lus font and size on masked repetition 
priming: an ERP investigation. Lang. 
Cogn. Process. 23, 183–200.

Davis, C. J. (2010). The spatial coding 
model of visual word identification. 
Psychol. Rev. 117, 713–758.

Davis, C. J., and Perea, M. (2005). 
BuscaPalabras: a program for deriv-
ing orthographic and phonological 
neighborhood statistics and other 
psycholinguistic indices in Spanish. 
Behav. Res. Methods 37, 665–671.

Dehaene, S. (2007). Les Neurones de la 
lecture. Paris: Odile Jacob.

Dehaene, S., Cohen, L., Sigman, M., and 
Vinckier, F. (2005). The neural code 
for written words: a proposal. Trends 
Cogn. Sci. (Regul. Ed.) 9, 335–341.

Dehaene, S., Nakamura, K., Jobert, A., 
Kuroki, C., Ogawa, S., and Cohen, L. 
(2010). Why do children make mir-
ror errors in reading? Neural cor-
relates of mirror invariance in the 

transparent relation between spelling and sound show a less pro-
nounced advantage for the final position in the string (e.g., Ktori 
and Pitchford, 2008, for Greek). Therefore future work will need to 
examine whether such variations in letter visibility across different 
languages, combined with a measure of informativeness such as 
applied in the present work, could be usefully applied to examine 
possible differences in orthographic priming effects as a function 
of the language under study.

Summing up, our analyses of the information carried by ortho-
graphic prime stimuli in different orthographic priming condi-
tions (matched in terms of the number of letters shared by prime 
and target) revealed one measure that captured the empirical data 
patterns. This is the rank of the conditional probabilities of the 
bigrams shared by prime and target among the complete set of 
target bigrams. This key finding suggests that further exploration 
of the role of letter combinations, and in particular non-contiguous 
letter combinations, in optimizing the extraction of meaning from 
print during skilled reading, is in order.

acknowledgMents
The authors wish to thank Fermin Moscoso Del Prado and Xavier 
Alario for insightful comments and suggestions. This project was 
supported by the Agence Nationale de la Recherche (grant no. 
ANR-06-BLAN-0337), the Europrean Research Council (ERC-
230313), and by grants PSI2009-08889 and CSD2008-00048 from 
the Spanish Government, and a post-doctoral fellowship from the 
Natural Sciences and Engineering Research Council of Canada 
(PDF-387545-2010).

and visual object recognition (Gosselin and Schyns, 2001). In this 
work, participants are typically asked to classify visual images as 
belonging to one of a possible set of object identities, and one 
examines how classification performance varies as a function of 
the nature of the information that is made available using the so-
called “bubbles” technique. For example, Fiset et al. (2008), using 
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